skip to main content


Search for: All records

Creators/Authors contains: "Benton, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Early dinosaurs evolved diverse tooth shapes and mechanics as adaptations to different diets, so ensuring their success. 
    more » « less
  2. Abstract The fossil record of marine invertebrates has long fuelled the debate as to whether or not there are limits to global diversity in the sea 1–5 . Ecological theory states that, as diversity grows and ecological niches are filled, the strengthening of biological interactions imposes limits on diversity 6,7 . However, the extent to which biological interactions have constrained the growth of diversity over evolutionary time remains an open question 1–5,8–11 . Here we present a regional diversification model that reproduces the main Phanerozoic eon trends in the global diversity of marine invertebrates after imposing mass extinctions. We find that the dynamics of global diversity are best described by a diversification model that operates widely within the exponential growth regime of a logistic function. A spatially resolved analysis of the ratio of diversity to carrying capacity reveals that less than 2% of the global flooded continental area throughout the Phanerozoic exhibits diversity levels approaching ecological saturation. We attribute the overall increase in global diversity during the Late Mesozoic and Cenozoic eras to the development of diversity hotspots under prolonged conditions of Earth system stability and maximum continental fragmentation. We call this the ‘diversity hotspots hypothesis’, which we propose as a non-mutually exclusive alternative to the hypothesis that the Mesozoic marine revolution led this macroevolutionary trend 12,13 . 
    more » « less
  3. null (Ed.)
    The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295–174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian–Triassic (P–Tr) and is flanked by two smaller crises, the Guadalupian–Lopingian (G–L) and Triassic–Jurassic (T–J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P–Tr mass extinction differed from the other two in two ways: (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G–L and T–J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P–Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P–Tr extinction. 
    more » « less
  4. Summary

    Biodiversity today has the unusual property that 85% of plant and animal species live on land rather than in the sea, and half of these live in tropical rainforests. An explosive boost to terrestrial diversity occurred fromc. 100–50 million years ago, the Late Cretaceous and early Palaeogene. During this interval, the Earth‐life system on land was reset, and the biosphere expanded to a new level of productivity, enhancing the capacity and species diversity of terrestrial environments. This boost in terrestrial biodiversity coincided with innovations in flowering plant biology and evolutionary ecology, including their flowers and efficiencies in reproduction; coevolution with animals, especially pollinators and herbivores; photosynthetic capacities; adaptability; and ability to modify habitats. The rise of angiosperms triggered a macroecological revolution on land and drove modern biodiversity in a secular, prolonged shift to new, high levels, a series of processes we name here the Angiosperm Terrestrial Revolution.

     
    more » « less